It seems we can’t find what you’re looking for. Perhaps searching can help.

Other Related Posts

樹脂製プッシュフィット配管継手の解除方法

樹脂製プッシュフィット配管継手の解除方法

樹脂製プッシュフィット配管継手の正しいリリース方法 モデル チューブ(a) ステム(b) 1801-A 1801-C 1/4 1/4 プラスチック製プッシュフィット継手を外す際に留意すべき最も重要なことの 1 つは、慎重かつ系統的に行うことです。プロセスを急いだり、過剰な力を加えたりすると、継手やパイプが損傷し、将来的に漏れやその他の問題が発生する可能性があります。始める前に、漏れの可能性を防ぐために、フィッティングが配置されているエリアへの給水を必ず止めてください。 プラスチック製のプッシュフィットフィッティングを外すには、パイプカッターや弓のこなどのいくつかのツールが必要です。 、調整可能なプライヤーのペア、およびプラスチック製のプッシュフィットリリースツール。リリースツールは、損傷を与えることなくプッシュフィットフィッティングを安全かつ効果的に取り外すように特別に設計されています。リリースツールがない場合は、調整可能なペンチを使用することもできますが、継手を損傷しないように注意してください。 まず、パイプ カッターまたはパイプ カッターを使用して継手の両側のパイプを切断します。弓のこ。継手を再組み立てするときに適切なシールを確保するために、パイプをできるだけ真っ直ぐに切断してください。パイプを切断したら、リリースツールまたはペンチを使用して継手をつかみ、時計回りにねじります。これにより、パイプのグリップが解放され、継手を取り外すことができるようになります。 1/4 3/26 プライヤーを使用してフィッティングを解除する場合は、損傷を避けるために、フィッティングをしっかりと握りすぎないように注意してください。パイプから外れるまで、穏やかな圧力を加えながら、継手を時計回りにゆっくりとひねります。フィッティングが頑固で外せない場合は、少量の潤滑剤を使用して緩めてみてください。 フィッティングを外したら、損傷や磨耗がないか点検してください。継手が損傷している場合は、配管システムを再組み立てする前に継手を交換する必要があります。継手の状態が良好な場合は、パイプを継手に挿入し、カチッと音がして所定の位置に収まるまで押し込むことで、配管システムを再組み立てできます。 結論として、プラスチック製のプッシュフィット配管継手の取り外しには忍耐と適切な工具が必要です。この記事で説明する適切なテクニックに従うことで、配管システムに損傷を与えることなく、安全かつ効果的にプッシュフィット継手を取り外すことができます。配管作業を開始する前に必ず給水を止め、システムを再組み立てする前に継手の損傷を検査してください。適切なアプローチを使用すれば、プラスチック製のプッシュフィット継手を正常に解放し、配管システムを最高の状態に保つことができます。 プラスチック製プッシュフィット配管継手のリリース時に避けるべき間違い プラスチック製プッシュフィット配管継手は、取り付けの容易さと多用途性により、近年ますます人気が高まっています。これらの継手は、はんだ付けや接着剤を必要とせずにパイプ間に安全な接続を作成するように設計されています。ただし、その便利さにもかかわらず、プラスチック製のプッシュフィット配管継手の取り外しは困難な作業になる場合があります。この記事では、プラスチック製のプッシュフィット配管継手をリリースする際に避けるべきよくある間違いについて説明します。 モデル チューブ(a) ステム(b) 1801-A 1801-C 1/4 1/4 プラスチック製のプッシュフィット配管継手を外そうとするときに犯す最も一般的な間違いの 1 つは、継手の取り外し準備が適切に行われていないことです。フィッティングを解除する前に、フィッティングが設置されているエリアへの給水を止めることが重要です。こうすることで、金具を外した際に水が漏れるのを防ぎます。さらに、取り外しのプロセス中に出てくる可能性のある余分な水を受け止めるために、バケツやタオルを手元に用意しておくことをお勧めします。 プラスチック製のプッシュフィット配管継手を取り外すときに避けるべきもう 1 つの間違いは、過剰な力を使用することです。レンチやペンチを使ってフィッティングを無理に外そうとする誘惑に駆られるかもしれませんが、実際にはフィッティングが損傷し、取り外しがより困難になる可能性があります。代わりに、プラスチック製プッシュフィット継手専用に設計された適切なリリースツールを使用することが最善です。これらのツールは、損傷を与えることなくフィッティングを安全かつ簡単に取り外せるように設計されています。 リリースする前に、フィッティングが適切に位置合わせされていることを確認することも重要です。フィッティングが正しく位置合わせされていない場合、取り外しが困難になる可能性があり、パイプに損傷を与える可能性があります。フィッティングを解除する前に、時間をかけて、フィッティングが適切に位置合わせされ、所定の位置にしっかりと固定されていることを確認してください。 1/4 3/28 プラスチック製のプッシュフィット配管継手を取り外すときに避けるべきもう 1 つのよくある間違いは、パイプを適切にサポートしていないことです。継手を取り外すときは、パイプが曲がったり折れたりしないようにサポートすることが重要です。これは、パイプ サポートを使用するか、片手でパイプを所定の位置に保持しながら、もう一方の手で継手を解放することによって行うことができます。 最後に、プラスチック製のプッシュ フィット配管継手を解放するときに覚えておくべき最も重要なことの 1 つは、時間をかけて行うことです。 。急いでプロセスを進めると間違いが発生し、パイプや継手に損傷を与える可能性があります。代わりに、時間をかけて、メーカーの指示に従ってフィッティングを外してください。 結論として、プラスチック製のプッシュフィット配管継手の取り外しは、正しく行われないと困難な作業になる可能性があります。これらのよくある間違いを避け、時間をかけてフィッティングを適切に準備して位置合わせすることで、損傷を与えることなくプラスチック製のプッシュフィット配管フィッティングを安全かつ簡単に取り外すことができます。常に給水を止め、適切なリリースツールを使用し、フィッティングを正しく位置合わせし、パイプをサポートし、時間をかけて作業することを忘れないでください。これらのヒントを念頭に置くと、プラスチック製のプッシュフィット配管継手を正常に解放し、配管プロジェクトを簡単に完了できます。 Another common mistake to avoid when…

ペンテア タゲルス TA 100D

ペンテア タゲルス TA 100D

Pentair Tagelus TA 100Dの正しいメンテナンスのヒント Pentair Tagelus TA 100D フィルターを最高の動作状態に保つには、適切なメンテナンスが不可欠です。定期的なメンテナンスを怠ると、ろ過が不十分になり、水の透明度が低下し、将来的には高額な修理が必要になる可能性があります。いくつかの簡単なメンテナンスのヒントに従うことで、Pentair Tagelus TA 100D フィルターが今後何年にもわたって効率的かつ効果的に動作することを確認できます。 Pentair Tagelus TA 100D フィルターの最も重要なメンテナンス作業の 1 つは、定期的な逆洗です。逆洗は、フィルターを通る水の流れを逆にして、捕らえられたゴミや汚染物質を洗い流すプロセスです。これは少なくとも週に 1 回、またはプールの使用量が多い場合や水圧の低下に気付いた場合は、より頻繁に行う必要があります。 Pentair Tagelus TA 100D フィルターを逆洗するには、バルブを「逆洗」位置に回し、水が透明になるまで数分間ポンプを作動させるだけです。 定期的な逆洗に加えて、汚れに注意することも重要です。 Pentair Tagelus TA 100D フィルターの圧力ゲージ。圧力が急激に上昇した場合は、フィルターが目詰まりしており、掃除が必要であることを示している可能性があります。圧力計の数値が通常より 8 ~ 10 psi 高い場合は、フィルターを掃除する時期です。これを行うには、フィルター カートリッジを取り外し、ホースで水を軽くスプレーしてゴミを取り除きます。さらに深く洗浄するには、フィルター カートリッジを水とフィルター クリーナーの溶液に浸してから、完全にすすぐことができます。 Pentair Tagelus TA 100D フィルターのもう 1 つの重要なメンテナンス作業は、フィルター カートリッジの定期的な検査です。時間の経過とともに、フィルター カートリッジが摩耗または損傷し、濾過効率の低下につながる可能性があります。フィルター カートリッジに破れや穴などの摩耗の兆候がないか定期的に検査し、必要に応じて交換してください。フィルター カートリッジが損傷していると、破片がフィルターを迂回してプールに侵入し、水質の悪化やプール設備の損傷につながる可能性があります。 定期的な逆洗、圧力計の監視、フィルター カートリッジの検査に加えて、Pentair Tagelus…

フロートランスミッターアダラ

フロートランスミッターアダラ

流量伝送器を産業用途に使用するメリット 流量伝送器は、液体や気体の流量を測定するために、さまざまな産業用途で使用される必須のデバイスです。これらのデバイスは、石油とガス、化学製造、水処理などの産業におけるプロセスの効率と精度を確保する上で重要な役割を果たしています。この記事では、産業用途でフロートランスミッターを使用する利点について説明します。 モデル CIT-8800 誘導導電率・濃度オフラインコントローラー 集中力 1.NaOH:(0〜15)パーセントまたは(25〜50)パーセント; 2.HNO3:(0~25) パーセントまたは (36~82) パーセント; 3.ユーザー定義の濃度曲線 導電性 (500~2,000,000)μS/cm TDS (250~1,000,000)ppm 温度 (0~120)°C 解像度 導電率:0.01μS/cm、濃度: 0.01 パーセント; TDS:0.01ppm、温度:0.1℃ 精度 導電率: (500~1000)uS/cm +/-10uS/cm; (1~2000)mS/cm+/-1.0パーセント TDS: 1.5 レベル、温度: +/-0.5℃ 温度補償 範囲: (0~120)°C;元素:Pt1000 通信ポート RS485.Modbus RTUプロトコル アナログ出力 2チャンネル絶縁/可搬型(4-20)mA、計測器/送信機選択可能 制御出力 3チャンネル半導体光電スイッチ、プログラマブルスイッチ、パルスと周波数 労働環境 温度(0~50)℃;相対湿度

卸売塩ビ継手

卸売塩ビ継手

卸売PVC継手を配管工事に使用するメリット 配管プロジェクトに関しては、システムの寿命と効率を確保するために高品質の材料を使用することが不可欠です。配管継手の一般的なオプションの 1 つは、PVC またはポリ塩化ビニルです。 PVC 継手は耐久性、手頃な価格、取り付けの容易さで知られており、プロの配管工と DIY 愛好家の両方に人気があります。 配管プロジェクトに卸売の PVC 継手を使用する主な利点の 1 つは、コストの削減です。卸売業者から継手を一括購入すると、プロジェクトの全体コストを大幅に削減できます。これは、大量の継手を購入する必要がある大規模プロジェクトや請負業者にとって特に有益です。まとめ買いすると割引価格を利用でき、長期的にはお金を節約できます。 コスト削減に加えて、卸売の PVC 継手は耐久性でも知られています。 PVC は、高圧や高温に耐えられる強くて硬い素材なので、配管システムでの使用に最適です。 PVC 継手は腐食、錆、化学的損傷にも耐性があり、配管システムが今後何年も持続することが保証されます。この耐久性は、厳しい気象条件や湿気の多い地域では特に重要です。 卸売の PVC 継手を使用するもう 1 つの利点は、取り付けが簡単であることです。 PVC 継手は軽量で扱いやすいため、DIY 愛好家に人気があります。フィッティングは、特殊な工具や機器を必要とせずに、簡単に切断、接着、接続できます。この取り付けの容易さにより、建設プロセス中の時間と労力が節約され、PVC 継手は専門家と住宅所有者の両方にとって便利なオプションとなっています。 さらに、卸売の PVC 継手は、あらゆる配管プロジェクトに合わせて幅広いサイズと構成で入手できます。小規模な住宅プロジェクトでも大規模な商業ビルでも、特定の要件を満たす PVC 継手を見つけることができます。エルボやティーからカップリングやアダプターに至るまで、あらゆる用途に適した PVC フィッティングがあります。この多用途性により、PVC 継手はさまざまな配管プロジェクトに多用途かつ実用的な選択肢となります。 コネクタ型式 Aサイズ Bサイズ Cサイズ 1821-E 1/2″ 3/8″ 1/2″ モデル チューブ(a) ステム(b) 1801-A 1/4 1/4 1801-C 1/4 3/24…

逆浸透を発見した人

逆浸透を発見した人

逆浸透:シドニー・ローブとスリニヴァーサ・スリラジャンによって発見。 逆浸透の歴史とその発見 逆浸透は広く使用されている浄水プロセスであり、きれいな飲料水を得る方法に革命をもたらしました。しかし、誰がこの驚くべき技術を発見したのか疑問に思ったことはありますか?この記事では、逆浸透の歴史を詳しく掘り下げ、その発見に重要な役割を果たした人々に光を当てます。 半透膜を通る溶媒分子の自然な動きである浸透の概念は、最初に観察されました。ジャン アントワーヌ ノレというフランスの医師兼化学者が 1748 年に発見しました。しかし、浸透の反対のプロセスである逆浸透が発見されたのは 20 世紀半ばになってからでした。 逆浸透の物語は、ある優秀な科学者から始まります。シドニー・ローブという名前。 1950 年代後半、ローブはカリフォルニア大学ロサンゼルス校 (UCLA) で化学工学の教授として働いていました。彼は、半透膜を使用して水から塩を分離するというアイデアに魅了されました。このプロセスは、世界で深刻化する水不足問題の解決策となる可能性があります。 ローブの画期的な研究は、1959 年に最初の実用的な逆浸透膜の開発につながりました。彼と同僚のスリニヴァーサ・スリラジャンは、海水を効果的に脱塩できる合成膜の作成に成功した。これは逆浸透の歴史において重要なマイルストーンとなり、水浄化の新たな可能性を切り開きました。 ただし、この時期に逆浸透に取り組んでいたのはローブとスーリラジャンだけではないことに注意することが重要です。もう一人の科学者、ノルウェーの化学者レイダー・ナイガード氏もこの分野で研究を行っていました。 1958 年に、Nygaard は、脱塩目的での逆浸透の使用について説明した論文を発表しました。彼の研究はローブほど広く認識されていませんでしたが、逆浸透の開発に対するナイガードの貢献は無視されるべきではありません。 ローブ、スリラジャン、ナイガードによる画期的な進歩に続き、逆浸透技術が注目を集め始めました。当初は主に淡水化の目的で使用され、海水を淡水に変換する手段を提供しました。しかし、技術が進歩するにつれて、その用途は製薬、食品および飲料、廃水処理などのさまざまな産業を含むように拡大しました。 長年にわたって、逆浸透はますます効率的でコスト効率が高くなりました。このプロセスで使用される膜は大幅に改良され、水の回収率が向上し、汚染物質の除去が向上しました。今日、逆浸透は、溶解した塩、細菌、その他の不純物を最大 99 パーセント除去できる、最も効果的な浄水方法の 1 つとして広く認識されています。 結論として、逆浸透の発見は次のようなものであると考えられます。シドニー・ローブ、スリニヴァーサ・スリラジャン、レイダー・ナイガードの先駆的な作品。半透膜の分野における彼らの研究と革新は、この注目すべき浄水技術の開発への道を切り開きました。彼らの貢献のおかげで、逆浸透は、世界中の何百万人もの人々に清潔で安全な飲料水へのアクセスを確保する上で不可欠なツールとなっています。 コントローラーの種類 ROC-7000 1段/2段逆浸透制御統合システム   セル定数 0.1cm-1 1.0cm-1 10.0cm-1 導電率と測定パラメータ 原水の導電率       (0~2000) (0~20000)   一次導電率   (0~200) (0~2000)     二次導電率   (0~200) (0~2000)  …